MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. SAE-AISI 1345 Steel

Both S39277 stainless steel and SAE-AISI 1345 steel are iron alloys. They have 61% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is SAE-AISI 1345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
11 to 23
Fatigue Strength, MPa 480
230 to 390
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
72
Shear Strength, MPa 600
370 to 440
Tensile Strength: Ultimate (UTS), MPa 930
590 to 730
Tensile Strength: Yield (Proof), MPa 660
330 to 620

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 16
51
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.2
1.4
Embodied Energy, MJ/kg 59
19
Embodied Water, L/kg 180
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
78 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
290 to 1040
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 33
21 to 26
Strength to Weight: Bending, points 27
20 to 23
Thermal Diffusivity, mm2/s 4.2
14
Thermal Shock Resistance, points 26
19 to 23

Alloy Composition

Carbon (C), % 0 to 0.025
0.43 to 0.48
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 56.8 to 64.3
97.2 to 97.8
Manganese (Mn), % 0 to 0.8
1.6 to 1.9
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
0
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.8
0.15 to 0.35
Sulfur (S), % 0 to 0.0020
0 to 0.040
Tungsten (W), % 0.8 to 1.2
0