MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. C16200 Copper

S39277 stainless steel belongs to the iron alloys classification, while C16200 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
2.0 to 56
Fatigue Strength, MPa 480
100 to 210
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 600
190 to 390
Tensile Strength: Ultimate (UTS), MPa 930
240 to 550
Tensile Strength: Yield (Proof), MPa 660
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
370
Melting Completion (Liquidus), °C 1460
1080
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
360
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
90
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 23
30
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 4.2
2.6
Embodied Energy, MJ/kg 59
41
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
10 to 970
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 33
7.4 to 17
Strength to Weight: Bending, points 27
9.6 to 17
Thermal Diffusivity, mm2/s 4.2
100
Thermal Shock Resistance, points 26
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 1.2 to 2.0
98.6 to 99.3
Iron (Fe), % 56.8 to 64.3
0 to 0.2
Manganese (Mn), % 0 to 0.8
0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
0
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.0020
0
Tungsten (W), % 0.8 to 1.2
0