MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. ACI-ASTM CK35MN Steel

Both S40910 stainless steel and ACI-ASTM CK35MN steel are iron alloys. They have 60% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 23
40
Fatigue Strength, MPa 130
270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
81
Tensile Strength: Ultimate (UTS), MPa 430
650
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Corrosion, °C 440
440
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
31
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.0
5.9
Embodied Energy, MJ/kg 28
81
Embodied Water, L/kg 94
210

Common Calculations

PREN (Pitting Resistance) 11
48
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
210
Resilience: Unit (Modulus of Resilience), kJ/m3 94
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 6.9
3.3
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.035
Chromium (Cr), % 10.5 to 11.7
22 to 24
Copper (Cu), % 0
0 to 0.4
Iron (Fe), % 85 to 89.5
43.4 to 51.8
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0 to 0.5
20 to 22
Niobium (Nb), % 0 to 0.17
0
Nitrogen (N), % 0 to 0.030
0.21 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0 to 0.5
0