MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. EN 1.4958 Stainless Steel

Both S40910 stainless steel and EN 1.4958 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 130
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 270
430
Tensile Strength: Ultimate (UTS), MPa 430
630
Tensile Strength: Yield (Proof), MPa 190
190

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 440
500
Maximum Temperature: Mechanical, °C 710
1090
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.0
5.3
Embodied Energy, MJ/kg 28
75
Embodied Water, L/kg 94
200

Common Calculations

PREN (Pitting Resistance) 11
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
190
Resilience: Unit (Modulus of Resilience), kJ/m3 94
95
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.9
3.2
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0 to 0.030
0.030 to 0.080
Chromium (Cr), % 10.5 to 11.7
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 85 to 89.5
41.1 to 50.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0 to 0.5
30 to 32.5
Niobium (Nb), % 0 to 0.17
0 to 0.1
Nitrogen (N), % 0 to 0.030
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.5
0.2 to 0.5