MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. EN 1.5680 Steel

Both S40910 stainless steel and EN 1.5680 steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is EN 1.5680 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
23
Fatigue Strength, MPa 130
310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
390
Tensile Strength: Ultimate (UTS), MPa 430
620
Tensile Strength: Yield (Proof), MPa 190
440

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
48
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.9
Embodied Energy, MJ/kg 28
26
Embodied Water, L/kg 94
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
130
Resilience: Unit (Modulus of Resilience), kJ/m3 94
510
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.9
13
Thermal Shock Resistance, points 16
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 10.5 to 11.7
0
Iron (Fe), % 85 to 89.5
93.4 to 95
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Nickel (Ni), % 0 to 0.5
4.8 to 5.3
Niobium (Nb), % 0 to 0.17
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.0050
Titanium (Ti), % 0 to 0.5
0
Vanadium (V), % 0
0 to 0.050