MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. EN 1.7715 Steel

Both S40910 stainless steel and EN 1.7715 steel are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is EN 1.7715 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
21
Fatigue Strength, MPa 130
240
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
340
Tensile Strength: Ultimate (UTS), MPa 430
540
Tensile Strength: Yield (Proof), MPa 190
340

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
420
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.9
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
2.2
Embodied Energy, MJ/kg 28
30
Embodied Water, L/kg 94
52

Common Calculations

PREN (Pitting Resistance) 11
2.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
99
Resilience: Unit (Modulus of Resilience), kJ/m3 94
320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 16
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.030
0.1 to 0.15
Chromium (Cr), % 10.5 to 11.7
0.3 to 0.6
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 85 to 89.5
96.5 to 98.3
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0 to 0.17
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0 to 0.5
0
Vanadium (V), % 0
0.22 to 0.28