MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. EN 1.7720 Steel

Both S40910 stainless steel and EN 1.7720 steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is EN 1.7720 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
19
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 430
590
Tensile Strength: Yield (Proof), MPa 190
340

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
410
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
2.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
2.2
Embodied Energy, MJ/kg 28
30
Embodied Water, L/kg 94
51

Common Calculations

PREN (Pitting Resistance) 11
2.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
97
Resilience: Unit (Modulus of Resilience), kJ/m3 94
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 16
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 16
17

Alloy Composition

Carbon (C), % 0 to 0.030
0.1 to 0.15
Chromium (Cr), % 10.5 to 11.7
0.3 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 85 to 89.5
96.6 to 98.6
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.4
Niobium (Nb), % 0 to 0.17
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.45
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0 to 0.5
0
Vanadium (V), % 0
0.22 to 0.3