MakeItFrom.com
Menu (ESC)

S40910 Stainless Steel vs. Nickel 600

S40910 stainless steel belongs to the iron alloys classification, while nickel 600 belongs to the nickel alloys. They have a modest 20% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S40910 stainless steel and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
3.4 to 35
Fatigue Strength, MPa 130
220 to 300
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
75
Shear Strength, MPa 270
430 to 570
Tensile Strength: Ultimate (UTS), MPa 430
650 to 990
Tensile Strength: Yield (Proof), MPa 190
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1410
1350
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 26
14
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
55
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 2.0
9.0
Embodied Energy, MJ/kg 28
130
Embodied Water, L/kg 94
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 94
190 to 1490
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 16
21 to 32
Strength to Weight: Bending, points 16
20 to 26
Thermal Diffusivity, mm2/s 6.9
3.6
Thermal Shock Resistance, points 16
19 to 29

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 10.5 to 11.7
14 to 17
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 85 to 89.5
6.0 to 10
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
72 to 80
Niobium (Nb), % 0 to 0.17
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0 to 0.5
0