MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. AISI 316L Stainless Steel

Both S40920 stainless steel and AISI 316L stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
9.0 to 50
Fatigue Strength, MPa 130
170 to 450
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 77
80
Shear Modulus, GPa 75
78
Shear Strength, MPa 270
370 to 690
Tensile Strength: Ultimate (UTS), MPa 430
530 to 1160
Tensile Strength: Yield (Proof), MPa 190
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 710
870
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
3.9
Embodied Energy, MJ/kg 28
53
Embodied Water, L/kg 94
150

Common Calculations

PREN (Pitting Resistance) 11
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 97
93 to 1880
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
19 to 41
Strength to Weight: Bending, points 16
18 to 31
Thermal Diffusivity, mm2/s 6.9
4.1
Thermal Shock Resistance, points 15
12 to 25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 11.7
16 to 18
Iron (Fe), % 85.1 to 89.4
62 to 72
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
10 to 14
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.15 to 0.5
0