MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. EN 1.0597 Cast Steel

Both S40920 stainless steel and EN 1.0597 cast steel are iron alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is EN 1.0597 cast steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
18
Fatigue Strength, MPa 130
270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 430
670
Tensile Strength: Yield (Proof), MPa 190
400

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
400
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
53
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
1.7
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.4
Embodied Energy, MJ/kg 28
18
Embodied Water, L/kg 94
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
100
Resilience: Unit (Modulus of Resilience), kJ/m3 97
430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
24
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 6.9
14
Thermal Shock Resistance, points 15
21

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Iron (Fe), % 85.1 to 89.4
99.935 to 100
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0.15 to 0.5
0