MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. EN 1.4521 Stainless Steel

Both S40920 stainless steel and EN 1.4521 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is EN 1.4521 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
23
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Shear Strength, MPa 270
330
Tensile Strength: Ultimate (UTS), MPa 430
520
Tensile Strength: Yield (Proof), MPa 190
340

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
500
Maximum Temperature: Mechanical, °C 710
930
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
23
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.8
Embodied Energy, MJ/kg 28
39
Embodied Water, L/kg 94
130

Common Calculations

PREN (Pitting Resistance) 11
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
100
Resilience: Unit (Modulus of Resilience), kJ/m3 97
280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 6.9
6.2
Thermal Shock Resistance, points 15
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 10.5 to 11.7
17 to 20
Iron (Fe), % 85.1 to 89.4
74.6 to 81.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.015
Titanium (Ti), % 0.15 to 0.5
0.15 to 0.8