MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. EN 1.4588 Stainless Steel

Both S40920 stainless steel and EN 1.4588 stainless steel are iron alloys. They have 58% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is EN 1.4588 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
34
Fatigue Strength, MPa 130
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 430
540
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
33
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.0
6.2
Embodied Energy, MJ/kg 28
84
Embodied Water, L/kg 94
200

Common Calculations

PREN (Pitting Resistance) 11
44
Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
150
Resilience: Unit (Modulus of Resilience), kJ/m3 97
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 15
11

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.020
Chromium (Cr), % 10.5 to 11.7
19 to 21
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 85.1 to 89.4
41.2 to 50.4
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.5
24 to 26
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.020
Titanium (Ti), % 0.15 to 0.5
0