MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. EN 1.8893 Steel

Both S40920 stainless steel and EN 1.8893 steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is EN 1.8893 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
16
Fatigue Strength, MPa 130
470
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
510
Tensile Strength: Ultimate (UTS), MPa 430
830
Tensile Strength: Yield (Proof), MPa 190
720

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
2.9
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.7
Embodied Energy, MJ/kg 28
23
Embodied Water, L/kg 94
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
130
Resilience: Unit (Modulus of Resilience), kJ/m3 97
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
29
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 15
24

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.2
Chromium (Cr), % 10.5 to 11.7
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 85.1 to 89.4
95.6 to 98
Manganese (Mn), % 0 to 1.0
1.4 to 1.7
Molybdenum (Mo), % 0
0.3 to 0.45
Nickel (Ni), % 0 to 0.5
0.3 to 0.7
Niobium (Nb), % 0 to 0.1
0 to 0.050
Nitrogen (N), % 0 to 0.030
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.025
Titanium (Ti), % 0.15 to 0.5
0 to 0.050
Vanadium (V), % 0
0 to 0.12