MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. EN 1.8959 Steel

Both S40920 stainless steel and EN 1.8959 steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is EN 1.8959 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
16
Fatigue Strength, MPa 130
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
350
Tensile Strength: Ultimate (UTS), MPa 430
570
Tensile Strength: Yield (Proof), MPa 190
340

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
420
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
2.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.6
Embodied Energy, MJ/kg 28
21
Embodied Water, L/kg 94
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
78
Resilience: Unit (Modulus of Resilience), kJ/m3 97
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
20
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 6.9
10
Thermal Shock Resistance, points 15
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.19
Chromium (Cr), % 10.5 to 11.7
0.35 to 0.85
Copper (Cu), % 0
0.2 to 0.6
Iron (Fe), % 85.1 to 89.4
94.9 to 99
Manganese (Mn), % 0 to 1.0
0.45 to 1.6
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0 to 0.5
0 to 0.7
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.020
0 to 0.040
Titanium (Ti), % 0.15 to 0.5
0
Zirconium (Zr), % 0
0 to 0.17