MakeItFrom.com
Menu (ESC)

S40920 Stainless Steel vs. C95700 Bronze

S40920 stainless steel belongs to the iron alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S40920 stainless steel and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
130
Elongation at Break, % 22
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
47
Tensile Strength: Ultimate (UTS), MPa 430
680
Tensile Strength: Yield (Proof), MPa 190
310

Thermal Properties

Latent Heat of Fusion, J/g 270
230
Maximum Temperature: Mechanical, °C 710
220
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
950
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 26
12
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
26
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.0
3.3
Embodied Energy, MJ/kg 28
54
Embodied Water, L/kg 94
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
130
Resilience: Unit (Modulus of Resilience), kJ/m3 97
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 15
23
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 6.9
3.3
Thermal Shock Resistance, points 15
21

Alloy Composition

Aluminum (Al), % 0
7.0 to 8.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
71 to 78.5
Iron (Fe), % 85.1 to 89.4
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
11 to 14
Nickel (Ni), % 0 to 0.5
1.5 to 3.0
Niobium (Nb), % 0 to 0.1
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0.15 to 0.5
0
Residuals, % 0
0 to 0.5