MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. C46400 Brass

S40930 stainless steel belongs to the iron alloys classification, while C46400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 23
17 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Shear Strength, MPa 270
270 to 310
Tensile Strength: Ultimate (UTS), MPa 430
400 to 500
Tensile Strength: Yield (Proof), MPa 190
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 710
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1410
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
120
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
26
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
29

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 32
47
Embodied Water, L/kg 94
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 94
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 16
14 to 17
Strength to Weight: Bending, points 16
15 to 17
Thermal Diffusivity, mm2/s 6.7
38
Thermal Shock Resistance, points 16
13 to 16

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 84.7 to 89.4
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.080 to 0.75
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0
36.3 to 40.5
Residuals, % 0
0 to 0.4