MakeItFrom.com
Menu (ESC)

S40930 Stainless Steel vs. C85700 Brass

S40930 stainless steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S40930 stainless steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 23
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Tensile Strength: Ultimate (UTS), MPa 430
310
Tensile Strength: Yield (Proof), MPa 190
110

Thermal Properties

Latent Heat of Fusion, J/g 270
170
Maximum Temperature: Mechanical, °C 710
120
Melting Completion (Liquidus), °C 1450
940
Melting Onset (Solidus), °C 1410
910
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 25
84
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
25

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 32
47
Embodied Water, L/kg 94
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
41
Resilience: Unit (Modulus of Resilience), kJ/m3 94
59
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 16
11
Strength to Weight: Bending, points 16
13
Thermal Diffusivity, mm2/s 6.7
27
Thermal Shock Resistance, points 16
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 84.7 to 89.4
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Niobium (Nb), % 0.080 to 0.75
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.050
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3