MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. 5040 Aluminum

S40945 stainless steel belongs to the iron alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
66 to 74
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 25
5.7 to 6.8
Fatigue Strength, MPa 160
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 270
140 to 150
Tensile Strength: Ultimate (UTS), MPa 430
240 to 260
Tensile Strength: Yield (Proof), MPa 230
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 710
190
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 26
160
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
41
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
130

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
9.5
Density, g/cm3 7.8
2.8
Embodied Carbon, kg CO2/kg material 2.2
8.3
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 94
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 140
260 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 15
24 to 26
Strength to Weight: Bending, points 16
31 to 32
Thermal Diffusivity, mm2/s 6.9
64
Thermal Shock Resistance, points 15
10 to 11

Alloy Composition

Aluminum (Al), % 0
95.2 to 98
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0.1 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 85.1 to 89.3
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 0 to 1.0
0.9 to 1.4
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15