MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. AISI 309HCb Stainless Steel

Both S40945 stainless steel and AISI 309HCb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 74% of their average alloy composition in common.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is AISI 309HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
46
Fatigue Strength, MPa 160
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 69
82
Shear Modulus, GPa 75
78
Shear Strength, MPa 270
410
Tensile Strength: Ultimate (UTS), MPa 430
590
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 450
510
Maximum Temperature: Mechanical, °C 710
1090
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1410
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
4.1
Embodied Energy, MJ/kg 31
59
Embodied Water, L/kg 94
170

Common Calculations

PREN (Pitting Resistance) 11
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
210
Resilience: Unit (Modulus of Resilience), kJ/m3 140
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 15
13

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 10.5 to 11.7
22 to 24
Iron (Fe), % 85.1 to 89.3
56 to 66
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.5
12 to 16
Niobium (Nb), % 0.18 to 0.4
0 to 1.1
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.050 to 0.2
0