MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. EN 1.4434 Stainless Steel

Both S40945 stainless steel and EN 1.4434 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is EN 1.4434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
41
Fatigue Strength, MPa 160
270
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
79
Shear Strength, MPa 270
450
Tensile Strength: Ultimate (UTS), MPa 430
660
Tensile Strength: Yield (Proof), MPa 230
310

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 710
980
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
21
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
4.2
Embodied Energy, MJ/kg 31
57
Embodied Water, L/kg 94
160

Common Calculations

PREN (Pitting Resistance) 11
32
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
220
Resilience: Unit (Modulus of Resilience), kJ/m3 140
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
23
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 6.9
4.0
Thermal Shock Resistance, points 15
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 11.7
16.5 to 19.5
Iron (Fe), % 85.1 to 89.3
59.2 to 69.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.5
10.5 to 14
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0.1 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.050 to 0.2
0