MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. EN 1.4446 Stainless Steel

Both S40945 stainless steel and EN 1.4446 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is EN 1.4446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
140
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
23
Fatigue Strength, MPa 160
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
79
Tensile Strength: Ultimate (UTS), MPa 430
490
Tensile Strength: Yield (Proof), MPa 230
240

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 710
980
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
14
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
4.5
Embodied Energy, MJ/kg 31
60
Embodied Water, L/kg 94
160

Common Calculations

PREN (Pitting Resistance) 11
34
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
93
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
17
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 6.9
3.6
Thermal Shock Resistance, points 15
11

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 11.7
16.5 to 18.5
Iron (Fe), % 85.1 to 89.3
59.7 to 66.9
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 4.5
Nickel (Ni), % 0 to 0.5
12.5 to 14.5
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0.12 to 0.22
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0.050 to 0.2
0