MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. EN 1.6368 Steel

Both S40945 stainless steel and EN 1.6368 steel are iron alloys. They have 89% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
18
Fatigue Strength, MPa 160
310 to 330
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 270
410 to 430
Tensile Strength: Ultimate (UTS), MPa 430
660 to 690
Tensile Strength: Yield (Proof), MPa 230
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
410
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
3.4
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
1.7
Embodied Energy, MJ/kg 31
22
Embodied Water, L/kg 94
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
580 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 15
23 to 24
Strength to Weight: Bending, points 16
21 to 22
Thermal Diffusivity, mm2/s 6.9
11
Thermal Shock Resistance, points 15
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0 to 0.030
0 to 0.17
Chromium (Cr), % 10.5 to 11.7
0 to 0.3
Copper (Cu), % 0
0.5 to 0.8
Iron (Fe), % 85.1 to 89.3
95.1 to 97.2
Manganese (Mn), % 0 to 1.0
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 0.5
1.0 to 1.3
Niobium (Nb), % 0.18 to 0.4
0.015 to 0.045
Nitrogen (N), % 0 to 0.030
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.25 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.050 to 0.2
0