MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. C60800 Bronze

S40945 stainless steel belongs to the iron alloys classification, while C60800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
55
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
46
Shear Strength, MPa 270
290
Tensile Strength: Ultimate (UTS), MPa 430
390
Tensile Strength: Yield (Proof), MPa 230
150

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 710
210
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1410
1050
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 26
80
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
17
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
18

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 2.2
2.9
Embodied Energy, MJ/kg 31
48
Embodied Water, L/kg 94
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
170
Resilience: Unit (Modulus of Resilience), kJ/m3 140
94
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 15
13
Strength to Weight: Bending, points 16
14
Thermal Diffusivity, mm2/s 6.9
23
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
92.5 to 95
Iron (Fe), % 85.1 to 89.3
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.050 to 0.2
0
Residuals, % 0
0 to 0.5