MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. C68800 Brass

S40945 stainless steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 25
2.0 to 36
Poisson's Ratio 0.28
0.32
Rockwell B Hardness 69
81 to 99
Shear Modulus, GPa 75
41
Shear Strength, MPa 270
380 to 510
Tensile Strength: Ultimate (UTS), MPa 430
570 to 890
Tensile Strength: Yield (Proof), MPa 230
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 270
190
Maximum Temperature: Mechanical, °C 710
160
Melting Completion (Liquidus), °C 1450
960
Melting Onset (Solidus), °C 1410
950
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 26
40
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
18
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
20

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
48
Embodied Water, L/kg 94
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
710 to 2860
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 15
19 to 30
Strength to Weight: Bending, points 16
19 to 25
Thermal Diffusivity, mm2/s 6.9
12
Thermal Shock Resistance, points 15
19 to 30

Alloy Composition

Aluminum (Al), % 0
3.0 to 3.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 0
70.8 to 75.5
Iron (Fe), % 85.1 to 89.3
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5