MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. C82000 Copper

S40945 stainless steel belongs to the iron alloys classification, while C82000 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is C82000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
8.0 to 20
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 69
55 to 95
Shear Modulus, GPa 75
45
Tensile Strength: Ultimate (UTS), MPa 430
350 to 690
Tensile Strength: Yield (Proof), MPa 230
140 to 520

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 710
220
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1410
970
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 26
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
45
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
46

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
60
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.2
5.0
Embodied Energy, MJ/kg 31
77
Embodied Water, L/kg 94
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
51 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 140
80 to 1120
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 15
11 to 22
Strength to Weight: Bending, points 16
12 to 20
Thermal Diffusivity, mm2/s 6.9
76
Thermal Shock Resistance, points 15
12 to 24

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Beryllium (Be), % 0
0.45 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 11.7
0 to 0.1
Cobalt (Co), % 0
2.2 to 2.7
Copper (Cu), % 0
95.2 to 97.4
Iron (Fe), % 85.1 to 89.3
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0 to 0.2
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.050 to 0.2
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5