MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. N06230 Nickel

S40945 stainless steel belongs to the iron alloys classification, while N06230 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is N06230 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 25
38 to 48
Fatigue Strength, MPa 160
250 to 360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
83
Shear Strength, MPa 270
420 to 600
Tensile Strength: Ultimate (UTS), MPa 430
620 to 840
Tensile Strength: Yield (Proof), MPa 230
330 to 400

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Mechanical, °C 710
990
Melting Completion (Liquidus), °C 1450
1370
Melting Onset (Solidus), °C 1410
1300
Specific Heat Capacity, J/kg-K 480
420
Thermal Conductivity, W/m-K 26
8.9
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
85
Density, g/cm3 7.8
9.5
Embodied Carbon, kg CO2/kg material 2.2
11
Embodied Energy, MJ/kg 31
160
Embodied Water, L/kg 94
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
200 to 330
Resilience: Unit (Modulus of Resilience), kJ/m3 140
250 to 380
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
21
Strength to Weight: Axial, points 15
18 to 25
Strength to Weight: Bending, points 16
17 to 21
Thermal Diffusivity, mm2/s 6.9
2.3
Thermal Shock Resistance, points 15
17 to 23

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Boron (B), % 0
0 to 0.015
Carbon (C), % 0 to 0.030
0.050 to 0.15
Chromium (Cr), % 10.5 to 11.7
20 to 24
Cobalt (Co), % 0
0 to 5.0
Iron (Fe), % 85.1 to 89.3
0 to 3.0
Lanthanum (La), % 0
0.0050 to 0.050
Manganese (Mn), % 0 to 1.0
0.3 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Nickel (Ni), % 0 to 0.5
47.5 to 65.2
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0.25 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.050 to 0.2
0
Tungsten (W), % 0
13 to 15