MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. S32808 Stainless Steel

Both S40945 stainless steel and S32808 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 73% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 25
17
Fatigue Strength, MPa 160
350
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 270
480
Tensile Strength: Ultimate (UTS), MPa 430
780
Tensile Strength: Yield (Proof), MPa 230
570

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 450
460
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1470
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
14
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
24
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.2
4.0
Embodied Energy, MJ/kg 31
57
Embodied Water, L/kg 94
180

Common Calculations

PREN (Pitting Resistance) 11
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
790
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
27
Strength to Weight: Bending, points 16
24
Thermal Diffusivity, mm2/s 6.9
3.8
Thermal Shock Resistance, points 15
21

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 11.7
27 to 27.9
Iron (Fe), % 85.1 to 89.3
58.1 to 62.8
Manganese (Mn), % 0 to 1.0
0 to 1.1
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0 to 0.5
7.0 to 8.2
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0.3 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0.050 to 0.2
0
Tungsten (W), % 0
2.1 to 2.5