MakeItFrom.com
Menu (ESC)

S40945 Stainless Steel vs. S44625 Stainless Steel

Both S40945 stainless steel and S44625 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40945 stainless steel and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
22
Fatigue Strength, MPa 160
240
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 270
370
Tensile Strength: Ultimate (UTS), MPa 430
590
Tensile Strength: Yield (Proof), MPa 230
360

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
450
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
17
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
14
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.8
Embodied Energy, MJ/kg 31
39
Embodied Water, L/kg 94
160

Common Calculations

PREN (Pitting Resistance) 11
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
110
Resilience: Unit (Modulus of Resilience), kJ/m3 140
310
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
21
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 6.9
4.6
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.010
Chromium (Cr), % 10.5 to 11.7
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 85.1 to 89.3
69.4 to 74.3
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.18 to 0.4
0
Nitrogen (N), % 0 to 0.030
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0.050 to 0.2
0