MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. AISI 309HCb Stainless Steel

Both S40975 stainless steel and AISI 309HCb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 74% of their average alloy composition in common.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is AISI 309HCb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
46
Fatigue Strength, MPa 210
210
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 81
82
Shear Modulus, GPa 75
78
Shear Strength, MPa 290
410
Tensile Strength: Ultimate (UTS), MPa 460
590
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 450
510
Maximum Temperature: Mechanical, °C 710
1090
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
23
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.0
4.1
Embodied Energy, MJ/kg 28
59
Embodied Water, L/kg 95
170

Common Calculations

PREN (Pitting Resistance) 11
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
210
Resilience: Unit (Modulus of Resilience), kJ/m3 250
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 7.0
4.0
Thermal Shock Resistance, points 17
13

Alloy Composition

Carbon (C), % 0 to 0.030
0.040 to 0.1
Chromium (Cr), % 10.5 to 11.7
22 to 24
Iron (Fe), % 84.4 to 89
56 to 66
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0.5 to 1.0
12 to 16
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.75
0