MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. AISI 310Cb Stainless Steel

Both S40975 stainless steel and AISI 310Cb stainless steel are iron alloys. Both are furnished in the annealed condition. They have 65% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is AISI 310Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
39
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 81
84
Shear Modulus, GPa 75
78
Shear Strength, MPa 290
390
Tensile Strength: Ultimate (UTS), MPa 460
580
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Maximum Temperature: Corrosion, °C 450
520
Maximum Temperature: Mechanical, °C 710
1100
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
28
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
4.8
Embodied Energy, MJ/kg 28
69
Embodied Water, L/kg 95
190

Common Calculations

PREN (Pitting Resistance) 11
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 7.0
3.9
Thermal Shock Resistance, points 17
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 10.5 to 11.7
24 to 26
Iron (Fe), % 84.4 to 89
47.2 to 57
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0.5 to 1.0
19 to 22
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.75
0