MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. AISI 445 Stainless Steel

Both S40975 stainless steel and AISI 445 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
25
Fatigue Strength, MPa 210
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 81
71
Shear Modulus, GPa 75
78
Shear Strength, MPa 290
310
Tensile Strength: Ultimate (UTS), MPa 460
480
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
480
Maximum Temperature: Mechanical, °C 710
950
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
21
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.0
2.6
Embodied Energy, MJ/kg 28
38
Embodied Water, L/kg 95
130

Common Calculations

PREN (Pitting Resistance) 11
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
98
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
17
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 7.0
5.6
Thermal Shock Resistance, points 17
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.020
Chromium (Cr), % 10.5 to 11.7
19 to 21
Copper (Cu), % 0
0.3 to 0.6
Iron (Fe), % 84.4 to 89
74.9 to 80.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0.5 to 1.0
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.012
Titanium (Ti), % 0 to 0.75
0