MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. AWS E309Mo

Both S40975 stainless steel and AWS E309Mo are iron alloys. They have 71% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is AWS E309Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
79
Tensile Strength: Ultimate (UTS), MPa 460
620

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
15
Thermal Expansion, µm/m-K 10
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
22
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
4.2
Embodied Energy, MJ/kg 28
59
Embodied Water, L/kg 95
180

Common Calculations

PREN (Pitting Resistance) 11
32
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 7.0
3.9
Thermal Shock Resistance, points 17
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 10.5 to 11.7
22 to 25
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 84.4 to 89
53.6 to 63.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0.5 to 1.0
12 to 14
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.75
0