MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. AWS E312

Both S40975 stainless steel and AWS E312 are iron alloys. They have 71% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is AWS E312.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
25
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
80
Tensile Strength: Ultimate (UTS), MPa 460
740

Thermal Properties

Latent Heat of Fusion, J/g 270
310
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Expansion, µm/m-K 10
15

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
20
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.0
3.6
Embodied Energy, MJ/kg 28
52
Embodied Water, L/kg 95
200

Common Calculations

PREN (Pitting Resistance) 11
31
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
27
Strength to Weight: Bending, points 17
24
Thermal Shock Resistance, points 17
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 10.5 to 11.7
28 to 32
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 84.4 to 89
52.3 to 63.5
Manganese (Mn), % 0 to 1.0
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0.5 to 1.0
8.0 to 10.5
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.75
0