MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. EN 1.3505 Steel

Both S40975 stainless steel and EN 1.3505 steel are iron alloys. They have 89% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is EN 1.3505 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
72
Tensile Strength: Ultimate (UTS), MPa 460
600 to 690

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
430
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
45
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.0
1.5
Embodied Energy, MJ/kg 28
20
Embodied Water, L/kg 95
52

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
22 to 25
Strength to Weight: Bending, points 17
20 to 22
Thermal Diffusivity, mm2/s 7.0
12
Thermal Shock Resistance, points 17
18 to 20

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0.93 to 1.1
Chromium (Cr), % 10.5 to 11.7
1.4 to 1.6
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 84.4 to 89
97.1 to 98.3
Manganese (Mn), % 0 to 1.0
0.25 to 0.45
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0.5 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Oxygen (O), % 0
0 to 0.0015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.75
0