MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. EN 1.4941 Stainless Steel

Both S40975 stainless steel and EN 1.4941 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
39
Fatigue Strength, MPa 210
180
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 290
400
Tensile Strength: Ultimate (UTS), MPa 460
590
Tensile Strength: Yield (Proof), MPa 310
210

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 450
520
Maximum Temperature: Mechanical, °C 710
940
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 26
16
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.0
3.3
Embodied Energy, MJ/kg 28
47
Embodied Water, L/kg 95
140

Common Calculations

PREN (Pitting Resistance) 11
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
21
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 7.0
4.3
Thermal Shock Resistance, points 17
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0 to 0.030
0.040 to 0.080
Chromium (Cr), % 10.5 to 11.7
17 to 19
Iron (Fe), % 84.4 to 89
65.1 to 73.6
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0.5 to 1.0
9.0 to 12
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0 to 0.75
0.4 to 0.8