MakeItFrom.com
Menu (ESC)

S40975 Stainless Steel vs. EN 1.5501 Steel

Both S40975 stainless steel and EN 1.5501 steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S40975 stainless steel and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
120 to 150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22
12 to 17
Fatigue Strength, MPa 210
180 to 270
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 290
270 to 310
Tensile Strength: Ultimate (UTS), MPa 460
390 to 510
Tensile Strength: Yield (Proof), MPa 310
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 710
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 26
52
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.0
1.4
Embodied Energy, MJ/kg 28
18
Embodied Water, L/kg 95
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 250
190 to 460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
14 to 18
Strength to Weight: Bending, points 17
15 to 18
Thermal Diffusivity, mm2/s 7.0
14
Thermal Shock Resistance, points 17
11 to 15

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.030
0.13 to 0.16
Chromium (Cr), % 10.5 to 11.7
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 84.4 to 89
98.4 to 99.269
Manganese (Mn), % 0 to 1.0
0.6 to 0.8
Nickel (Ni), % 0.5 to 1.0
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.75
0