MakeItFrom.com
Menu (ESC)

S40977 Stainless Steel vs. EN 1.4613 Stainless Steel

Both S40977 stainless steel and EN 1.4613 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S40977 stainless steel and the bottom bar is EN 1.4613 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
21
Fatigue Strength, MPa 200
180
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
79
Shear Strength, MPa 320
330
Tensile Strength: Ultimate (UTS), MPa 510
530
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
550
Maximum Temperature: Mechanical, °C 720
1050
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
19
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.6
Embodied Energy, MJ/kg 27
38
Embodied Water, L/kg 97
150

Common Calculations

PREN (Pitting Resistance) 12
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
91
Resilience: Unit (Modulus of Resilience), kJ/m3 250
190
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 6.7
5.2
Thermal Shock Resistance, points 18
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.050
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 12.5
22 to 25
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 83.9 to 89.2
70.3 to 77.8
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0.3 to 1.0
0 to 0.5
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0
0.2 to 1.0