MakeItFrom.com
Menu (ESC)

S40977 Stainless Steel vs. S39274 Stainless Steel

Both S40977 stainless steel and S39274 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 74% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S40977 stainless steel and the bottom bar is S39274 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
270
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 21
17
Fatigue Strength, MPa 200
380
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 76
81
Shear Strength, MPa 320
560
Tensile Strength: Ultimate (UTS), MPa 510
900
Tensile Strength: Yield (Proof), MPa 310
620

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 720
1100
Melting Completion (Liquidus), °C 1440
1480
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
16
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
24
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.9
4.3
Embodied Energy, MJ/kg 27
60
Embodied Water, L/kg 97
180

Common Calculations

PREN (Pitting Resistance) 12
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
140
Resilience: Unit (Modulus of Resilience), kJ/m3 250
940
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
32
Strength to Weight: Bending, points 18
26
Thermal Diffusivity, mm2/s 6.7
4.2
Thermal Shock Resistance, points 18
25

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 10.5 to 12.5
24 to 26
Copper (Cu), % 0
0.2 to 0.8
Iron (Fe), % 83.9 to 89.2
57 to 65.6
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0.3 to 1.0
6.0 to 8.0
Nitrogen (N), % 0 to 0.030
0.24 to 0.32
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.020
Tungsten (W), % 0
1.5 to 2.5