MakeItFrom.com
Menu (ESC)

S40977 Stainless Steel vs. S44330 Stainless Steel

Both S40977 stainless steel and S44330 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common.

For each property being compared, the top bar is S40977 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
160
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
25
Fatigue Strength, MPa 200
160
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 76
79
Shear Modulus, GPa 76
78
Shear Strength, MPa 320
280
Tensile Strength: Ultimate (UTS), MPa 510
440
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
560
Maximum Temperature: Mechanical, °C 720
990
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 27
40
Embodied Water, L/kg 97
140

Common Calculations

PREN (Pitting Resistance) 12
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
91
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 18
17
Thermal Diffusivity, mm2/s 6.7
5.7
Thermal Shock Resistance, points 18
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 10.5 to 12.5
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 83.9 to 89.2
72.5 to 79.7
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0 to 0.030
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.8