MakeItFrom.com
Menu (ESC)

S41003 Stainless Steel vs. ASTM A182 Grade F92

Both S41003 stainless steel and ASTM A182 grade F92 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S41003 stainless steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
22
Fatigue Strength, MPa 200
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 320
440
Tensile Strength: Ultimate (UTS), MPa 520
690
Tensile Strength: Yield (Proof), MPa 310
500

Thermal Properties

Latent Heat of Fusion, J/g 270
260
Maximum Temperature: Mechanical, °C 720
590
Melting Completion (Liquidus), °C 1440
1490
Melting Onset (Solidus), °C 1400
1450
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
26
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
10

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.8
Embodied Energy, MJ/kg 27
40
Embodied Water, L/kg 97
89

Common Calculations

PREN (Pitting Resistance) 12
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
140
Resilience: Unit (Modulus of Resilience), kJ/m3 240
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 7.2
6.9
Thermal Shock Resistance, points 19
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 10.5 to 12.5
8.5 to 9.5
Iron (Fe), % 83.4 to 89.5
85.8 to 89.1
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 1.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0 to 0.030
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010