MakeItFrom.com
Menu (ESC)

S41003 Stainless Steel vs. EN 1.4589 Stainless Steel

Both S41003 stainless steel and EN 1.4589 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 95% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S41003 stainless steel and the bottom bar is EN 1.4589 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 21
17
Fatigue Strength, MPa 200
260
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 320
400
Tensile Strength: Ultimate (UTS), MPa 520
650
Tensile Strength: Yield (Proof), MPa 310
440

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 390
470
Maximum Temperature: Mechanical, °C 720
810
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
25
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.9
2.4
Embodied Energy, MJ/kg 27
34
Embodied Water, L/kg 97
110

Common Calculations

PREN (Pitting Resistance) 12
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
96
Resilience: Unit (Modulus of Resilience), kJ/m3 240
490
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 7.2
6.7
Thermal Shock Resistance, points 19
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 10.5 to 12.5
13.5 to 15.5
Iron (Fe), % 83.4 to 89.5
78.2 to 85
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 1.2
Nickel (Ni), % 0 to 1.5
1.0 to 2.5
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.3 to 0.5