MakeItFrom.com
Menu (ESC)

S41003 Stainless Steel vs. EN AC-21100 Aluminum

S41003 stainless steel belongs to the iron alloys classification, while EN AC-21100 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S41003 stainless steel and the bottom bar is EN AC-21100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 21
6.2 to 7.3
Fatigue Strength, MPa 200
79 to 87
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 520
340 to 350
Tensile Strength: Yield (Proof), MPa 310
210 to 240

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 720
170
Melting Completion (Liquidus), °C 1440
670
Melting Onset (Solidus), °C 1400
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 27
130
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
34
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
100

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 1.9
8.0
Embodied Energy, MJ/kg 27
150
Embodied Water, L/kg 97
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
19 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 240
300 to 400
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 19
31 to 33
Strength to Weight: Bending, points 18
36 to 37
Thermal Diffusivity, mm2/s 7.2
48
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
4.2 to 5.2
Iron (Fe), % 83.4 to 89.5
0 to 0.19
Manganese (Mn), % 0 to 1.5
0 to 0.55
Nickel (Ni), % 0 to 1.5
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.18
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1