MakeItFrom.com
Menu (ESC)

S41041 Stainless Steel vs. 710.0 Aluminum

S41041 stainless steel belongs to the iron alloys classification, while 710.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S41041 stainless steel and the bottom bar is 710.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
75
Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17
2.2 to 3.6
Fatigue Strength, MPa 350
55 to 110
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Shear Strength, MPa 560
180
Tensile Strength: Ultimate (UTS), MPa 910
240 to 250
Tensile Strength: Yield (Proof), MPa 580
160

Thermal Properties

Latent Heat of Fusion, J/g 270
380
Maximum Temperature: Mechanical, °C 740
170
Melting Completion (Liquidus), °C 1450
650
Melting Onset (Solidus), °C 1410
610
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 29
140
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
110

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.2
8.0
Embodied Energy, MJ/kg 31
150
Embodied Water, L/kg 100
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
4.9 to 7.9
Resilience: Unit (Modulus of Resilience), kJ/m3 860
180 to 190
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 32
23
Strength to Weight: Bending, points 27
29
Thermal Diffusivity, mm2/s 7.8
53
Thermal Shock Resistance, points 33
10 to 11

Alloy Composition

Aluminum (Al), % 0 to 0.050
90.5 to 93.1
Carbon (C), % 0.13 to 0.18
0
Chromium (Cr), % 11.5 to 13
0
Copper (Cu), % 0
0.35 to 0.65
Iron (Fe), % 84.5 to 87.8
0 to 0.5
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0.4 to 0.6
0 to 0.050
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15