MakeItFrom.com
Menu (ESC)

S41041 Stainless Steel vs. EN 1.5502 Steel

Both S41041 stainless steel and EN 1.5502 steel are iron alloys. They have 87% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S41041 stainless steel and the bottom bar is EN 1.5502 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 240
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17
12 to 20
Fatigue Strength, MPa 350
190 to 290
Poisson's Ratio 0.28
0.29
Reduction in Area, % 56
62 to 76
Shear Modulus, GPa 76
73
Shear Strength, MPa 560
280 to 330
Tensile Strength: Ultimate (UTS), MPa 910
400 to 1380
Tensile Strength: Yield (Proof), MPa 580
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 740
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 29
52
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
1.4
Embodied Energy, MJ/kg 31
19
Embodied Water, L/kg 100
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
41 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 860
200 to 520
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
14 to 49
Strength to Weight: Bending, points 27
15 to 35
Thermal Diffusivity, mm2/s 7.8
14
Thermal Shock Resistance, points 33
12 to 40

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0.13 to 0.18
0.15 to 0.2
Chromium (Cr), % 11.5 to 13
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 84.5 to 87.8
98 to 99.249
Manganese (Mn), % 0.4 to 0.6
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.5
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025