MakeItFrom.com
Menu (ESC)

S41045 Stainless Steel vs. 4047 Aluminum

S41045 stainless steel belongs to the iron alloys classification, while 4047 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S41045 stainless steel and the bottom bar is 4047 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 25
3.4
Fatigue Strength, MPa 160
45
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Shear Strength, MPa 280
69
Tensile Strength: Ultimate (UTS), MPa 430
120
Tensile Strength: Yield (Proof), MPa 230
64

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Maximum Temperature: Mechanical, °C 740
160
Melting Completion (Liquidus), °C 1450
580
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 29
130
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
120

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
9.5
Density, g/cm3 7.8
2.5
Embodied Carbon, kg CO2/kg material 2.2
7.7
Embodied Energy, MJ/kg 31
140
Embodied Water, L/kg 100
1050

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
3.5
Resilience: Unit (Modulus of Resilience), kJ/m3 140
28
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
55
Strength to Weight: Axial, points 16
13
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 7.8
59
Thermal Shock Resistance, points 16
5.6

Alloy Composition

Aluminum (Al), % 0
85.3 to 89
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 12 to 13
0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 83.8 to 88
0 to 0.8
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0 to 0.15
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0 to 0.6
0
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
11 to 13
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15