MakeItFrom.com
Menu (ESC)

S41045 Stainless Steel vs. EN 1.4319 Stainless Steel

Both S41045 stainless steel and EN 1.4319 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S41045 stainless steel and the bottom bar is EN 1.4319 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
51
Fatigue Strength, MPa 160
240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 280
460
Tensile Strength: Ultimate (UTS), MPa 430
640
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 430
410
Maximum Temperature: Mechanical, °C 740
890
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 29
15
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
13
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.2
2.7
Embodied Energy, MJ/kg 31
39
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 13
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
260
Resilience: Unit (Modulus of Resilience), kJ/m3 140
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
23
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 7.8
4.0
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.070
Chromium (Cr), % 12 to 13
16 to 18
Iron (Fe), % 83.8 to 88
70.8 to 78
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Niobium (Nb), % 0 to 0.6
0
Nitrogen (N), % 0 to 0.030
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030