MakeItFrom.com
Menu (ESC)

S41045 Stainless Steel vs. S46800 Stainless Steel

Both S41045 stainless steel and S46800 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common.

For each property being compared, the top bar is S41045 stainless steel and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
25
Fatigue Strength, MPa 160
160
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 70
79
Shear Modulus, GPa 76
77
Shear Strength, MPa 280
300
Tensile Strength: Ultimate (UTS), MPa 430
470
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 430
500
Maximum Temperature: Mechanical, °C 740
920
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 29
23
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.2
2.6
Embodied Energy, MJ/kg 31
37
Embodied Water, L/kg 100
130

Common Calculations

PREN (Pitting Resistance) 13
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
98
Resilience: Unit (Modulus of Resilience), kJ/m3 140
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 16
17
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 7.8
6.1
Thermal Shock Resistance, points 16
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 12 to 13
18 to 20
Iron (Fe), % 83.8 to 88
76.5 to 81.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0 to 0.6
0.1 to 0.6
Nitrogen (N), % 0 to 0.030
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3