MakeItFrom.com
Menu (ESC)

S41050 Stainless Steel vs. 1050 Aluminum

S41050 stainless steel belongs to the iron alloys classification, while 1050 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S41050 stainless steel and the bottom bar is 1050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 25
4.6 to 37
Fatigue Strength, MPa 160
31 to 57
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 300
52 to 81
Tensile Strength: Ultimate (UTS), MPa 470
76 to 140
Tensile Strength: Yield (Proof), MPa 230
25 to 120

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 720
170
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
650
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 27
230
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
61
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
200

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.9
8.3
Embodied Energy, MJ/kg 27
160
Embodied Water, L/kg 97
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
5.4 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 140
4.6 to 110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
7.8 to 14
Strength to Weight: Bending, points 17
15 to 22
Thermal Diffusivity, mm2/s 7.2
94
Thermal Shock Resistance, points 17
3.4 to 6.2

Alloy Composition

Aluminum (Al), % 0
99.5 to 100
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 10.5 to 12.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 84.2 to 88.9
0 to 0.4
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Nickel (Ni), % 0.6 to 1.1
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050