MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. EN AC-51200 Aluminum

S41425 stainless steel belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
80
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 17
1.1
Fatigue Strength, MPa 450
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Tensile Strength: Ultimate (UTS), MPa 920
220
Tensile Strength: Yield (Proof), MPa 750
150

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 810
170
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 16
92
Thermal Expansion, µm/m-K 10
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
74

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 2.9
9.6
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 120
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 33
24
Strength to Weight: Bending, points 27
31
Thermal Diffusivity, mm2/s 4.4
39
Thermal Shock Resistance, points 33
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 15
0
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 74 to 81.9
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0.5 to 1.0
0 to 0.55
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 4.0 to 7.0
0 to 0.1
Nitrogen (N), % 0.060 to 0.12
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0 to 2.5
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15