MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. Grade 1 Titanium

S41425 stainless steel belongs to the iron alloys classification, while grade 1 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is grade 1 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
120
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
28
Fatigue Strength, MPa 450
170
Poisson's Ratio 0.28
0.32
Reduction in Area, % 51
36
Shear Modulus, GPa 77
39
Shear Strength, MPa 570
200
Tensile Strength: Ultimate (UTS), MPa 920
310
Tensile Strength: Yield (Proof), MPa 750
220

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 810
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 16
20
Thermal Expansion, µm/m-K 10
8.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 2.9
31
Embodied Energy, MJ/kg 40
510
Embodied Water, L/kg 120
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
79
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
230
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 33
19
Strength to Weight: Bending, points 27
23
Thermal Diffusivity, mm2/s 4.4
8.2
Thermal Shock Resistance, points 33
24

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 12 to 15
0
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 74 to 81.9
0 to 0.2
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 4.0 to 7.0
0
Nitrogen (N), % 0.060 to 0.12
0 to 0.030
Oxygen (O), % 0
0 to 0.18
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
99.095 to 100
Residuals, % 0
0 to 0.4